

## Hydrogen economy in Finland: opportunities and challenges ahead

H2Cluster Finland & HYGCEL project joint seminar

May 22nd, Oodi Central Library, Helsinki

## Agenda

## Scan the QR Code to access today's agenda!

Stay informed and keep track of all the exciting sessions and events happening today. Simply scan the QR code with your phone to view the full schedule and detailed information about each segment. Don't miss a moment of the action.





## Share Your Thoughts on Finland's Hydrogen Economy

**Scan the QR code:** Use your phone to scan the QR code and join the conversation.

Enter the Code: Alternatively, go towww.menti.com and enter the code 84849571 to participate.





## Hydrogen economy in Finland: the big picture





### **Simo Säynevirta** H2 Cluster Finland chair

### Petteri Laaksonen

Research Director, School of Energy Systems, LUT

luster



# The northern way to a free industrious Europe

H2Cluster Finland & HYGCEL project joint seminar, 22.5.2024, Oodi

HYDROGEN CLUSTER FINLAND

### Europe needs a balanced approach that uses each region's strengths to its fullest

Finland aims to produce 10% of Europe's clean hydrogen, projected cost at €1.8-2.5kg





**Source:** Guidehouse analysis based on: EHB; Ministry of Natural Resources, Hydrogen Strategy For Canada (2020); Ministry of Energy, Government of Chile, National Green Hydrogen Strategy (2020); UNSW Sydney, The Case for an Australia Hydrogen Export market to Germany (2021); Department of Science and Innovation, Hydrogen Society Roadmap for South Africa (2021); Qamar Energy, UAE's Role in H2 Economy (2021). \*Carrier undefined in strategy; assumption: ammonia, \*\*Carrier undefined in strategy; assumption: LH2

Finland is a natural starting point for Europe to produce hydrogen





Solar electricity generation
Wind electricity generation
Non-fossil electricity generation

We connect multiple pathways to secure and reinvent Europe's most critical industrial and transportation value chains





### More than 30

hydrogen projects under construction or planned

Annual hydrogen production of planned projects more than **700.000 tonnes** 

Trusting, yet prepared - we drive comprehensive security





## **2.4 GW**

of wind power completed in just one year while detaching from Russian energy

Connect a million ways of hydrogen with





LUT UNIVERSITY STRATEGY 2030 • TRAILBLAZERS – Science with a Purpose

SYSTEM

AIR Turning emissions into opportunities

BUSINESS AND SOCIETY Sustainable renewal of business and industry

WATER Refining

sidestreams into value ENERGY

Transition to a carbon-neutral

world

### HYDROGEN CLUSTER & HYGCEL PROJECT JOINT SEMINAR

Helsinki, 22.5.2024

Petteri Laaksonen, D.Sc., Research Director

petteri.laaksonen@lut.fi



### **GREEN ELECTRIFICATION & P2X ECONOMY**

### Big picture and conclusions from the research

#### >> Zero CO2 emission, low-cost energy system is based on renewable electricity (mainly solar PV and wind power)

- Demand of electricity will three to four-fold in Europe
- Electricity will be always used directly whenever possible (electric vehicles, heat pumps, desalination, etc.)
- Indirect electrification via hydrogen will take place by e-fuels (marine, aviation), e-chemicals, e-steel; power-to-hydrogen-to-X
- 24/7 production in industries (like steel, chemical) with little flexibility is viable by flexibility hydrogen storages

#### >> Competitive advantage is based on the price of electricity

- · Iberian peninsula and Nordic countries in Europe have competitive advantage
- In Finland, the potential for affordable electricity production exceeds easily 1000 TWh's (in 2023 it was 79,8 TWh)
- Competitive advantage of Finland (Sweden, Norway) is related to affordable and available electricity and bio-based CO2
- Nordic countries could represent 35-40% of the electricity demand in EU (3500 4000 TWh)
- >> New industrial investments will locate to near affordable electricity production
  - Transporting of hydrogen or electricity long distances is not competitive
  - · Most cost competitive way of production of hydrogen and e-chemicals, is near to electricity production
  - Exporting chemicals, plastics and fuels is easy logistics is in place
  - Based on the LUT modelling, methanol will be the biggest chemical by volume. Methanol and its derivatives will be used in chemical industry as well as a fuel in shipping and aviation (MTO to eKerosene)
  - Social acceptance of the change is crucial to achieve the positive impacts in society
- >> Regulation plays a big role in market creation
- >> Resilience of Finnish energy system and welfare of the society will be remarkable improved due to electrification

LUT <u>Univers</u>ity

### **Energy system transition in Europe**





Greens/EFA, 2022 https://extranet.greensefa.eu/public/media/file/1/78 62

Authors: Manish Ram, Dmitrii Bogdanov, Rasul Satymov, Gabriel Lopez, Theophilus Mensah, Kristina Sadovskaia, Christian Breyer



## Thank you!

Petteri Laaksonen, D.Sc., Research Director LUT School of Energy Systems LUT School of Engineering Sciences

## Why is Finnish hydrogen economy important for the German industry?





### Lotta Westerlund

Deputy Managing Director

German-Finnish Chamber of Commerce

Why is the Finnish Hydrogen Economy important for the German industry?



Deutsch-Finnische Handelskammer Saksalais-Suomalainen Kauppakamari Tysk-Finska Handelskammaren

## AHK Finnland – the German-Finnish Chamber of Commerce

The AHK Network with over 150 locations in 93 countries across the world advises, assists and represents German and local companies worldwide to help them establish or expand their foreign business. With this aim, the AHK Finnland acts as institution to promote German and Finnish foreign trade and is subsidised by the German Federal Ministry for Economics and Climate Action (BMWK) as well as the Finnish Ministry of Economic Affairs.

We at the German-Finnish Chamber of Commerce work bilateral with both German and Finnish companies to find and support new connections and opportunities.



Deutsch-Finnische Handelskammer Saksalais-Suomalainen Kauppakamari Tysk-Finska Handelskammaren

## Germany is in a unique position to drive forward the transformation of the energy system in Europe



### Economy

- Largest economy in Europe, 3<sup>rd</sup> largest in the world
- Population: 84.3 million
- Gross Domestic Product per capita: 52,800 USD

### **Energy sector**

- Electricity consumption per capita: 6,204 kWh
- Total Energy Consumption: 10,791 PJ
- Total power capacity: 245 GW, renewable: 167 GW

### "Energiewende" x3

- Closing of the last nuclear power plants
- Replacing coal with renewables
- Independence from Russian gas

## Germany restructured its energy imports in response to the Russian invasion of Ukraine

Development of energy imports from Russia



### Diversification of energy supply

- Restructuring energy imports and thinking
  - about the fossil-free future
- Temporary LNG infrastructure will be  $\rm H_2$  -ready

## Energy consumption by sector and industry

### Final energy consumption in Germany by sector in % of the total amount of energy used



Industry (manufacturing and mining)
Business, Commerce, Services
Private households
Traffic



## Germany is rapidly building up an infrastructure for the import of LNG and ammonia

Germany is securing its energy supply using a total of 14 LNG and ammonia import terminals



- Germany charters **five FSRUs** (plus one private FSRU) and plans to have **three land-based LNG import terminals**
- Next to the two existing ammonia import terminals, additional **two are planned**
- LNG infrastructure will be **hydrogen-ready**
- Rostock Port is building an ammonia cracker
  - FSRU in operation
  - Land-based LNG terminal in operation 🛑
    - FSRU not yet in operation 鑭
  - Land-based LNG terminal not yet in operation 👹
    - Ammonia import terminal in operation
  - Ammonia import terminal not yet in operation ∭

### Green Hydrogen will be one of Germany's future energy sources



## Import and infrastructure

#### Finaler Entwurf für das deutsche Wasserstoff-Kernnetz Stand: 14.11.2023



#### HANDELSBLATT Quellen: Bundesministerium für Wirtschaft und Klimaschutz, fnb-gas

#### Import

- BMWK is currently preparing an import strategy for hydrogen and H<sub>2</sub> derivates
- Finland has been identified as high potential production area for green H<sub>2</sub>

### Infrastructure

- Germany has an existing infrastructure for gas, which will be partly converted to H<sub>2</sub> use and supplemented with new pipelines
- Midsize industry players will probably not be able to pay for the last mile of the pipeline to their production site -> the role of H<sub>2</sub> derivates like ammonia might stay relevant also long term

### The Finnish green H<sub>2</sub> potential is recognized in Germany

### 2.3 Summary – Baltic area hydrogen production potential

Under the **optimistic scenario** there is a bigger surplus potential of about 119 TWhe expected. Finland is the main contributor here, as in the conservative scenario. The overall regional pattern in this scenario shows a higher stability than the conservative scenario.

DNV Study (ordered by Gascade) published on 16.5.2024

DNV

- In the optimistic scenario we see a more balanced development across the area. Still Sweden is starting with the highest surplus potential in 2030 which then halves by 2040 but afterwards remains stable. Whilst for Finland we observe an even stronger increase then in the conservative scenario. Timewise the following overall potential for surplus electricity to be used to produce green hydrogen for export could be achieved:
- 2030: 16 TWhe
- 2040: 90 TWhel
- 2050: 119 TWhe
- Also in this scenario Finland remains the largest contributor and would produce about 30 TWheimore than in the conservative scenario, which could be used for hydrogen production for export.
- Additionally, there is a small potential from the Baltic states and Poland.
- The precise NUTS regional breakdown for both scenarios will be explained in chapter 4 when we will address potential pipeline routings



## Germany provides targeted funding instruments to support green hydrogen projects worldwide

Germany's H<sub>2</sub> funding schemes

H2Global: Auction-based promotion of international green hydrogen projects

The Federal Ministry for Economic Affairs and Climate Protection is already providing 900 million euros for the first funding window. Further tenders are currently being prepared, with a volume of up to 3.5 billion euros.

H2Uppp: Provision of supporting services to small private-sector projects

Guarantee Instruments: to promote foreign trade and investment

### H<sub>2</sub> is one of the main topics in 2024 also for us @AHK Finnland



German-Finnish Business Forum on 30-31.10.2024 in Düsseldorf on the topic "post-fossil energy"



Deutsch-Finnische Handelskammer Saksalais-Suomalainen Kauppakamari Tysk-Finska Handelskammaren

### Thank you! Kiitos! Danke schön!



Lotta Westerlund

+359 40 779 9728 Lotta.Westerlund@dfhk.fi



AHKfinnland AHKfinnland AHKfinnland | AHKsuomi



**Deutsch-Finnische Handelskammer** Saksalais-Suomalainen Kauppakamari Tysk-Finska Handelskammaren



## Hydrogen and e-fuels in the maritime sector





### Sören Hedvik

Senior Project Manager in R&D

Wärtsilä



### Hydrogen and e-fuels in maritime

### Hydrogen Cluster & HYGCEL Joint Seminar



Sören Hedvik, Senior Project Manager

22 May 2024



### Regulation

### Sustainable fuels

3

2

### Wärtsilä's offering

31 © WÄRTSILÄ



## Regulation





Ambitions and checkpoints in the revised IMO GHG strategy<sup>2) 5)</sup>

Accelerated decarbonisation targets are shaping

GHG emission reduction % vs 2008



1) Source: Clarksons; total newbuilding and equipment upgrades investment for fleet renewal in 2023-2050; 2) Source: DNV Energy Transition Outlook 2023; well-to-wake GHG emission reduction compared to 2008; 3) Energy Efficiency eXisting ship Index; 4) Carbon Intensity Indicator; 5) Decarbonisation trajectories used by the Poseidon Principles represent the 2023 IMO GHG Strategy ambition of reducing total annual GHG emissions to net-zero around 2050 in a well-to-wake CO2e perceptive.

its GHG reduction targets, and now strives for **net**zero "by or around 2050"

In 2023, IMO strengthened

The total estimated investment in 2023-2050 is USD ~5.0 trillion<sup>1)</sup>

We can enable customers to reach intermediate and 2050 targets with our existing portfolio



### EU Emissions Trading System (ETS) for marine

| Implementation timeline                                      |          |        |      |       |        |      |
|--------------------------------------------------------------|----------|--------|------|-------|--------|------|
| Ship type & sizes                                            | 2023     | 2024   | 2025 | 2026  | 2027   | 2028 |
| Cargo/passenger ships (5000+ GT)                             |          |        |      |       |        |      |
| Offshore ships (5000+ GT)                                    |          |        |      |       |        |      |
| Smaller ships (400-5000 GT)                                  |          |        |      |       |        |      |
| Greenhouse gases                                             |          |        |      |       |        |      |
| Carbon dioxide (CO <sub>2</sub> )                            |          |        |      |       |        |      |
| Methane (CH <sub>4</sub> ), Nitrous oxide (N <sub>2</sub> O) |          |        |      |       |        |      |
| Phase-in                                                     |          |        |      |       |        |      |
| % of emissions included in ETS scope                         |          | 40%    | 70%  | 100%  | 100%   | 100% |
| Reporting only (MRV)                                         | Included | in ETS |      | To be | decide | d    |

- Uses the existing EU MRV (monitoring, reporting and verification) tool
- 100% of GHG from voyages within EEA, 50% of voyages to and from EEA ports
- Based on Tank-to-Wake emissions.
- Sustainable biofuels will be considered as zero.



#### What are EUAs?

- EU Allowances (EUAs) are a permit to emit a certain amount of CO<sub>2eq</sub>
- EUAs can be bought and sold on the market, and the variable market price of EUAs reflects the cost of reducing emissions
- No free allowances in marine, only phase-in period
- Revenue of 20 million allowances will be dedicated to maritime innovations





## FuelEU Maritime pushes fuels to become less GHG intensive

- Focus on fuels, not efficiency. Well-to-Wake GHG intensity is using unit gCO<sub>2eq</sub> /MJ
- 100% of GHG emissions from voyages within EEA, 50% of voyages to/from EEA ports
- **CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O** are calculated as CO2eq. Reward for using wind power.
- Shore power usage requirement for container and passenger ships from 2030
- Exceeding the limit results significant **financial penalty** (2400 €/"ton VLSFO emission")
- **Pooling** = requirement applies to the average GHG intensity of the ships in the pool





### **FuelEU Maritime**

is setting tightening requirements on the Well-to-Wake GHG intensity for the fuel consumed on board compared to 2020 reference limit of 91.16 gCO<sub>2eq</sub>/MJ

-2% from 2025 -6% from 2030 -14.5% from 2035 -31% from 2040 -62% from 2045 -80% from 2050

### Up to 2030, fuel cost will double due to emission fees

Fuel-related costs for Handymax bulker operating in EU waters, EURm<sup>1)</sup>



1) Assuming 5 000 tons/year VLSFO (Very Low Sulphur Fuel Oil) consumption subject to EU Fit-for-55, VLSFO at EUR 550/ton; EU allowances from EUR 100/ton today to EUR 230/ton in 2050 (source: Transport & Environment NGO); 2) E.g., local regulations and emission fees (EU Fit-for-55), green financing (Poseidon Principles), climate-linked chartering (Sea Cargo Charter), companies' ESG targets




RO

Est No.

WÄRTSILÄ

## Sustainable Fuels

#### A progressive switch to sustainable fuels is already under way



- Fuel transition is under way: 50% of tonnage on orderbook is set to use alternative fuels; longterm fuel mix is dependent on future fuel supply
- LNG is still #1 alternative fuel: 24% of tonnage ordered in 2023 is LNG fuelled
- Methanol is gaining share: 49% of boxship tonnage ordered in 2023 will run on methanol
- Ammonia will pick up in the longer run
- ✓ Hybrids, batteries, ESTs<sup>3)</sup> are growing:
  - 31% of the tonnage in current fleet is fitted with at least one EST
  - 42% of the tonnage on orderbook is fitted with at least one EST
  - 146 hybrid / full-electric 2000+ GT vessels were ordered in 2023 (102 in 2022, 55 in 2019)

1) Source: DNV Maritime Forecast 2050; 2) HFO – Heavy Fuel Oil; LSFO – Low Sulphur Fuel Oil; MGO – Marine Gas Oil; MDO – Marine Diesel Oil; LNG – Liquefied Natural Gas; 3) Energy Saving Technology

#### Sustainable fuels uptake roadmap to 2050





Targets based on latest MEPC80 regulation, referring to Well-to-Wake emissions

- LNG is well-placed to act as a transition fuel, followed by biofuels in the 2030s
- 'Blue' fuels such as blue ammonia will then act as bridging fuels
- Green synthetic fuels become widely available at scale as the 'gold standard' in the late 2030s and early 2040s

#### © Wärtsilä



#### **Costs and design impact**

| Fuel type                                                       | Low Sulphur<br>Fuel Oil | Liquified<br>Natural Gas  | Methanol<br>@ 20°C        | Ammonia<br>@ -33°C       | Liquid<br>Hydrogen        | Compressed<br>Hydrogen    | Marine<br>Battery Rack    |
|-----------------------------------------------------------------|-------------------------|---------------------------|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|
|                                                                 | @ 20 C                  | @-102 C                   |                           |                          | @-235 C                   | @ SSUDAI                  |                           |
| Fuel price<br>factor (per GJ) <sup>1)</sup>                     | 1x                      | 1.1x - 4.6x <sup>2)</sup> | 2.6x - 5.5x <sup>3)</sup> | $2.4x - 4.3x^{4}$        | 3.6x - 4.6x <sup>4)</sup> | 2.1x - 3.1x <sup>4)</sup> | 2.0x - 5.3x <sup>8)</sup> |
| Fuel price<br>factor in 2035,<br>incl. carbon tax <sup>1)</sup> | 1x                      | 0.8x - 1.4 <sup>2)</sup>  | 0.8x - 1.6x <sup>3)</sup> | 0.7x –1.2x <sup>4)</sup> | 1.2x – 1.5x <sup>4)</sup> | 0.6x – 1.0x <sup>4)</sup> | 0.8x – 2.0x <sup>8)</sup> |
| Gross tank<br>size factor <sup>6)</sup>                         | 1x                      | 1.7x – 2.4x <sup>7)</sup> | 1.7x                      | 3.9x                     | 7.3x                      | 19.5x                     | ~40x (~20x<br>potential)  |

1) Fuel production cost estimate for 2025 and 2035; source: Maersk Mc-Kinney Møller Center for Zero Carbon Shipping – NavigaTE 2023; 2) Price range spans between fossil & electro- methane; 3) Price range spans between bio- & electro- methanol; 4) Price range spans between blue- & electro- ammonia/hydrogen; 5) Assuming 100% consumption subject to EU Fit-for-55, EU allowances at EUR 159/ton (source: Transport & Environment NGO); 6) Gross tank estimations based on Wärtsilä experience; 7) 1.7x membrane tanks, 2.4x type C tanks; 8) Shore energy price EUR 10-27/kWh



AMMONIA

## Wärtsilä's offering

WARTSIL



#### Our purpose

## Enabling sustainable societies through innovation in technology and services

We are shaping the green transition in marine and energy with our advanced technologies, expertise in sustainable fuels and lifecycle service offering.



#### Uniquely positioned to drive global transformation in our industries

#### 1 in 3 of the world's vessels

are equipped with Wärtsilä solutions. That's over 30,000 ships.

#### Over 180 countries

where Wärtsilä energy installations provide reliable power.

#### 50% of sales come from services and 90% of our lifecycle customers renew their service agreement.

## Wärtsilä Marine: the right combination of solutions for each vessel and fleet













Engine optimisation & fuel flexibility Electrification & hybrid systems

Energy-saving solutions

Abatement systems & carbon capture Lifecycle solutions & services

#### Sustainable fuel engine offering



Milestones on low/zero carbon technologies in the pipeline

- 2015: First engine conversion ZA40S to methanol onboard ship
- 2023: Delivery of first W32 methanol engines. Sales release of additional marine engines and engine conversion packages

- 2022: Combustion and performance testing, optimization with different engine concepts and different engines platforms
  - 2023: Sales release of the first ammonia-capable W25 marine engine, delivery 2025.
  - 2021-2024: Combustion testing on H2 blends and 100% hydrogen
  - 2023: Hydrogen blend capability offered for all SG-engines
  - 2025: 100% Hydrogen concept ready
  - 2026: W31SG first industrialized 100% Hydrogen product ready



#### Methanol: Wärtsilä 32M (2023)

Methanol with diesel pilot

Pilot products enabling uptake of new fuels in the market

NH3

Dual fuel with backup (diesel)



#### Ammonia: Wärtsilä 25 (2025)

Ammonia with diesel pilot Dual fuel with backup (diesel)



#### Pure Hydrogen: Wärtsilä 31SG (2026)

Pure hydrogen, spark ignited

Hydrogen

#### Sustainable fuel solution offering







## Challenges in the EU approach to hydrogen markets and regulation



#### **Regulation findings from HYGCEL**



**Kim Talus** *Professor of Energy Law* 

UEF Law School and University of Helsinki



# Challenges in the EU approach to hydrogen markets and regulation

**Kim Talus** 

**UEF**// University of Eastern Finland

## Key messages

- Regulatory framework for RFNBO is complicated
- Regulatory demand for RFNBO has now been established
- Imports of RFNBO are unlikely to amount to significant volumes in the shortterm
- Regulatory framework has adjustments built-in and Member state role is critical

## **EU Regulatory framework for hydrogen**



## **Green hydrogen production rules**

- RED III + 2 DA's + Q&A = RFNBO
  - Electrolysers must be powered by additional renewable electricity
  - Power purchase agreement with RE producer necessary in most cases
  - Additionality, temporal and geographic correlation requirements apply in most cases
  - Possibility of adjustments through future Delegated Acts

#### EU Sectoral Targets for renewable hydrogen/RFNBO

- By 2030: 42.5% share of renewable energy in EU overall consumption; additional indicative top-up of 2.5%, allowing to reach 45%
- Industry (42% RFNBO by 2030, 60% by 2035), Transport (advanced biofuels and RFNBO 1% by 2025, 5.5% by 2030), Maritime (RFNBO 1.2% by 2030, possibly 2% by 2034), Aviation (RFNBO 1.2% in 2030, 35% by 2050, and SAF 70% by 2050)

The EU's regulatory obligations create stable demand that producers and exporters can rely on when making investment decisions

Large-scale production and imports are necessary to get anywhere near the targets: 10 million tonnes renewable hydrogen production and imports by 2030

# RFNBO import rules – challenges for importers

- Same EU RFNBO rules apply to imports into the EU. Challenges for importers:
  - No subsidies for RE production is allowed (US IRA)
  - Recognition of guarantees of origins is currently not possible (US REC's)
  - Bidding zones and imbalance settlement rules require a certain type of market
  - 'Renewable energy producer' and role of intermediaries is unclear
  - CO2 requirements for e-methanol production (effective carbon pricing mechanism; biogenic CO2; direct air capture) can be difficult to meet
  - Carbon Border Adjustment Mechanism (CBAM) creates more work and costs
  - Plus: access to import infrastructure is uncertain

## Long-term access to import facilities

- Main rule: Article 32 of the gas and hydrogen directive provides for a negotiated access regime, but access should be ensured (preamble 73)
- Exemption: Article 78 of the gas and hydrogen regulation may exempt hydrogen interconnectors, terminals and underground storage facilities
- Conditions (examples):
- enhances competition in hydrogen supply and enhance security of supply;
- contributes to decarbonisation and the achievement of the Union's climate and energy targets and was decided by applying the energy efficiency first principle;
- not detrimental to competition in the relevant markets which are likely to be affected by the investment, to the proper functioning of the internal integrated market for hydrogen, to the proper functioning of the regulated systems concerned, to decarbonisation or to the security of supply of the Union;
- the infrastructure has **not received Union financial assistance** for works under Connecting Europe Facility

# RFNBO sector as a sub-sector in hydrogen market

- Compliance with the RFNBO criteria is not mandatory for producing or importing hydrogen
- But: RFNBO is likely to be a separate sector with its on price dynamic and the rules must be followed in order to count as RFNBOs towards EU legislative targets; not counting as RFNBO is commercially less attractive

## Hydrogen market creation

 New framework builds on existing gas market rules and provide similar rights for various stakeholders. The framework allows for multiple adjustments (if the Member States so decides)

• Examples:

- Third party access for networks and underground storage before and after 31.12.2032
- Derogations subject to 7-year review: existing hydrogen networks, geographically confined hydrogen networks, horizontal unbundling
- Hydrogen networks in isolated regions (max 15 years and 2045)
- Capacity contracts: 20 years if operational before 2028, then 15 years but both subject to NRA market assessment
- Inter-temporal cost allocation with State quarantees (ACER recommendation on methodology)

## Way forward and possible changes

- Production of RFNBO: number of delegated acts will be issued by the Commission on important details – but the demand targets are likely to remain unchanged
- Market creation: the Member State and National Regulatory Authorities are in key position – the real timeframe for market creation uncertain
- State aid and EU subsidies: time is of essense, if a market is to be created, subsidies are needed now

## Way forward - Finland

RFNBO approach is beneficial for the Finnish industry, but:

- Adjustment opportunities need to be utilised
- State aid urgently needed if Finland is to position itself as a leader in the market
- Hydrogen transport infrastructure regulations and related permitting regulations are urgently needed
- Facilitation of permitting for the entire hydrogen value chain is urgently needed
- CO2 transport infrastructure?

## **Conclusion – markets in the making**

#### Internationally:

- Hydrogen market creation is a global challenge (nationally and in terms of trade)
- The EU is emerging as a global model for hydrogen production framework (the US approaching EU)

#### Within the EU

- Regulatory details for the production of RFNBO may still change
- Role and definition of low-carbon hydrogen is still unclear
- Demand for RFNBO has been created by regulation and it is unlikely to change
- Market rules have been set but adjustments are possible at national level



UNIVERSITY OF EASTERN FINLAND

## Thank you

uef.fi **f b (b) (in)** 

**UEF**// University of Eastern Finland

### Panel discussion: Challenges in the EU approach to hydrogen markets and regulation





**Leena Sivill** Principal, Energy Management Consulting

AFRY



**Outi Ervasti** Advisor, Innovation Business Platforms

Neste





**Kimmo Järvinen** Head of EU governmental Affairs

SSAB



**Kim Talus** Professor of Energy Law

UEF Law School and University of Helsinki



**Tatu Hocksell** Regulatory Affairs Specialist

Helen



## Lunch break until 12.40

H2Cluster Finland & HYGCEL project joint seminar

May 22, Oodi, Helsinki

www.h2cluster.fi

## Agenda

## Scan the QR Code to access today's agenda!

Stay informed and keep track of all the exciting sessions and events happening today. Simply scan the QR code with your phone to view the full schedule and detailed information about each segment. Don't miss a moment of the action.





## **Presentations of results from the HYGCEL project across the themes**



#### Introduction



### Mari Tuomaala

HYGCEL research lead

LUT





Overall HYGCEL research presentation

### **Presentations of results from the HYGCEL project across the themes**

Oodi, Helsinki, May 22, 2024





## HYGCEL – Hydrogen and carbon value chains in green electrification

LUT University (LUT) Tampere University (TAU) University of Eastern Finland (UEF)

Project time 1.1.2022 – 30.10.2024 Financed by Business Finland

Research budget 4,5 M€ Co-innovation consortium budget 10,5 M€

Altogether 17 consortium partners Almost 80 participating researchers





45





LUT University



### HYGCEL results



| Regulation                   | Challenges in the EU approach to hydrogen markets and regulation - 1 presentation                                                                                                               | WP1               |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Techno -<br>economy          | Resource potentials and regional imbalances in<br>infrastructure development - 3 presentations<br>Modelling of electricity, hydrogen, CO2,<br>and end-products transportation - 2 presentations | WP2<br>WP3<br>WP4 |
| Sustainability<br>and safety | Perspectives to sustainability, safety and profit sharing<br>in green hydrogen value chains - 2 presentations                                                                                   | WP6<br>WP1        |
| Politics                     | Hydrogen value chains: Reflection of global policies for the Finnish Hydrogen economy - 1 presentation                                                                                          | WP1               |

## LUT University

## Resource potentials and regional imbalances in HYGCEL infrastructure development



Hannu Karjunen

*Post-doctoral researcher, School of Energy Systems* 

#### Tero Tynjälä

Professor in Engineering Thermodynamics, Sc hool of Energy Systems

LUT University

Tampere University

Sami Repo

Professor in Smart Grids

LUT University

ster





HYGCEL research presentation

## Resource potentials and regional imbalances in infrastructure development

Oodi, Helsinki, May 22, 2024
## Presentations in this session



- 1. Finland's distributed PtX resources create unique production locations
  - Hannu Karjunen, post-doctoral researcher, LUT University
- 2. Finland's distributed resources create regional energy imbalances and transportation needs
  - Sami Repo, professor, Tampere University
- 3. Value from PtX plant flexibility
  - Tero Tynjälä, professor, LUT University



# Finland's distributed PtX resources create unique production

Topics of this presentation

- Finland's wind and solar potential and its distribution
- Distributed resources affecting infrastructure development

#### LUT University

## Finland could supply 10% of EU's renewable electricity

- EU electricity demand ~3700 TWh by 2030, including hydrogen demand of 10 Mt<sub>H2</sub> (530 TWh<sub>el</sub>)
- Available renewable potential exceeds Finland's domestic energy needs  $\rightarrow$  export strategy needed
- Finland's renewable power supply will be determined by social acceptance, demand and techno-economics
- Production sites for wind and solar complement each other





\* based on our "base case"-scenario land-use assumptions (potential in scenarios varied between 700 – 2500 TWh)





## PtX is sensitive to local conditions

- Each location is unique: different constraints and opportunities
- Location and design of an PtX industrial cluster will depend on several factors, like the availability of renewable power or CO<sub>2</sub>
  - Customized solutions for power supply, hydrogen storages and heat
  - Small production volumes are easier to place
- RFNBO regulation concerning connection requirements will be in a decisive role



#### LUT University

# There are several ways to connect the resources

- Renewable power generation capacity is spread across large areas and unevenly
- A demonstration (orange lines in the figure) was made to connect wind sites and CO<sub>2</sub> point sources.
  - Regions of surplus and deficit areas are formed
  - Transport infrastructure is needed
  - Resources might need to be connected from far
- Time window is open for deciding the placement of industrial clusters:
  - National strategies needed to guide the development?



#### Green: Wind potential (TWh)

Black: CO<sub>2</sub> conversion electricity demand (TWh)



## Finland's distributed PtX resources create unique production locations

### Key messages

- Renewable power potential is significant, dimensions of sustainability
- Wind and solar resources provide balancing of regional differences
- Wind and solar resources provide temporal balancing
- Local resources are always different, requiring tailored solutions
- Transport of resources will be required, in one form or another



Finland's distributed resources create regional energy imbalances and transportation needs

Topics of this presentation

- Distributed nature of resources and locational imbalances
- Energy transportation needs across areas of Finland.





- Mathematical model representing the regional structure and operation of the energy system in Finland.
- In the model, Finland is divided into 9 regions.
- The model optimizes the cheapest way to produce the hourly energy demand. Storages and demand response is included.

## Three scenarios were modelled

• Business as usual (BAU 2035)

4

- Finland's energy infrastructure develops by assuming the current publicly announced PtX development and extrapolating that to 2035.
- Self-sufficiency (SS 2035 and SS 2050)
  - All the consumed energy is produced in Finland
- Maximal utilization (MU 2050)
  - All the consumed energy is produced in Finland
  - Excess electricity is used for manufacturing PtX products for export

81

Nuclear

CHP (biomass)

#### **Tampere University** Electricity production capacities (left) and yearly production (right) in different scenarios 300 500 400 Capacity (GW) 001 002 (TWh) 300 200 ( 100 Energy ( 200 0 0 apacity Energy Energy Energy Energy Capacity Capacity Capacity **BAU 2035** SS 2035 SS 2050 MU 2050

Solar

Natural gas

Wind

Electrolyser capacity

Hydropower



## Modelling reveals regional imbalances



HYGCEL Tampere University

- The distributed nature of renewable energy resources and energy demand leads to regional imbalances: Finland has significant energy surplus and energy deficit areas.
- Modelled locations of production units (wind, PV, electrolysis, PtX) influence energy transport needs from one area to another
- Electricity grid reinforcement needs can be reduced by implementing a hydrogen transport infrastructure
  - This applies if electrolysis is regionally co-located with renewable electricity production

## Flexibility needed in the value chain

- >> The energy system needs flexible loads (i.e., flexible consumption) to balance the high variability of renewable electricity production
- >> To utilize all variable green electricity production potential, hydrogen production must be flexible and **buffered with storages**.
- Insufficient buffer storage capacity reduces hydrogen production volumes (i.e., potential will be lost).
- >> The energy system needs buffer storage capacity to cope with the temporal variations of green electricity production and this will not depend on the locations of hydrogen production units.

LUT University





Electricity production

45



# Finland's distributed resources create regional energy imbalances and transportation needs

#### Key messages

- Distributed nature of resources means that Finland has significant energy surplus and energy deficit areas.
- Electricity grid reinforcement needs can be reduced by implementing a hydrogen transport infrastructure
  - This applies especially if electrolysis is co-located with renewable electricity production.
- System level storage capacity and flexible electrolysis are needed in all scenarios, and it is not dependent on how hydrogen production will be located.



## Value from PtX plant flexibility

Topics of this presentation

- Flexibility in as a requirement from the system level to the production plant level
- Results from a dynamic methanol production simulation case study
- Results from H<sub>2</sub> storage studies

## PtX production plants create value





- Distributed renewable electricity –based energy system is regionally and temporally imbalanced
- Flexibility is needed both at the system level and at plant levels
- Flexibility at plant levels provide both stability and added value
  - Plant level flexibility is provided by:
  - Storages for H2, CO2, heat, and final products
  - Electrolysis, synthesis, CO2 capture processes

Results from simulation studies: Methanol processes can be modified to provide more flexibility and value



- Traditionally synthesis units and distillation processed are directly coupled
- Decoupling the process into dynamic production and steady state purification provides:
  - Shorter process start-up time
  - Faster process load changes, lower minimum load level
  - Storing of crude methanol is cheaper than storing of hydrogen

## Findings related to hydrogen storages



LUT University

- Optimal H<sub>2</sub> storage capacity varies between years and used electricity mix (Fig. 1)
- H<sub>2</sub> tank storage cost increases H<sub>2</sub> production costs by 0.1-0.8 €/kg<sub>H2</sub> (Fig. 2)
- Cost assumptions have a large effect on optimal unit capacities and full load hours



Source: Hyypiä, J. et al. (2023) HYGCEL results page https://www.lut.fi/en/hygcel



Source: Vilve, Sampo (2023). HYGCEL results page https://www.lut.fi/en/hygcel

## AI and IoT in PtX operations

- Al and machine learning based solutions can provide efficient ways to simulate and forecast plant operation.
- Current practices doesn't support collecting storing and sharing big data between multiple actors.
- Industrial interfaces need development, standardization and new policies to guarantee secure and reliable data sharing.





University

## Value from PtX plant level flexibility

#### Key messages

- Plant level flexibility provides added value for PtX plant operator.
- Optimal dimensioning of storages and process components is highly dependent on used electricity mix (wind, solar, grid) and operation conditions, such as annual price variations of electricity, heat and PtX products.
- Operation optimization can benefit from AI-based tools and data sharing IoT platforms.



## Finland's competitiveness in hydrogen production compared to the other EU countries



## **Dario Nikzad**

Senior Energy Analyst and Forecasting Lead

VaasaETT

Finland's competitiveness in hydrogen production compared to other EU countries Focus on attractive power markets and optimal supply strategies for PtX



#### About VaasaETT in a nutshell

DG Energy

Quarterly

Figure 55 – The H ber 2020

35 c€/ki

25 cEAW 15 c€AN 5 cE/m

-5 cE/kW

15 (684

-25 (65%)

Source: Vaasaet

#### 20 Years of thought leadership





### **Power Procurement and PtX – Optimal markets and strategies**

"Choosing the right market and power procurement strategy are two of the most important and underestimated factors determining the cost competitiveness of PtX plants"

Analysis of five different power procurement strategies through SATI optimization model



## SATI-H<sub>2</sub>, Model structure

The model aim is to minimize the hydrogen production cost, by optimizing the system electricity supply to meet the electrolyser's operational target (highest-capacity factor). The model structure follows the figure shown below:



\*EESS – Electrical Energy Storage system

## SchOptima – Optimization engine

SATI model takes multiple inputs from a user friendly interface which is processed through a dedicated optimization engine to produce several high quality output files based on user specification and requirements. A brief flow chart is presented below. A simplified mathematical model for the optimizer (SchOptima) is presented in the next page.



\*SchOptima (Schedule Optimizer) is a temporal mixed-integer linear optimization programming model developed by VaasaETT, for resource dispatch schedule optimization

vaasa ETT

### **Optimizad Dispatch with hourly granularity – Summer 2035 example**



## VaasaETT know-how on long-term bill forecast

VaasaETT has a long experience (since 2013) in storing historical full bill examples (from LV to HV customers) and providing long-term bill forecast in over 60 countries globally.

#### **Energy charges**

In-house Supply Stack Model (Merit-Order Model) for long-term power price forecast:

- Trained on historical supply/demand monthly data;
- Simulates marginal pricing mechanism at bidding zone level
- Highly sensitive to changes in demand, supply, energy mix and transmission constraints
- National Strategic Plans, IEA, ENTSO-E and national TSOs scenario are basis of scenario building

#### **Network charges**

Dedicated model focuses on:

- Short and long-term TSO/DSOs grid investment plans, regulatory asset base (RAB) of PP&E, historical transmission tariffs and changes in the regulatory framework.
- Sensitive to CAPEX, OPEX, depreciation and WACC
- Determines the all-in network price (USD/kWh) per consumer type (HV, MV and LV level)





Example of energy price formation following the supply stack methodology

Example of network charge forecast based on three scenario

#### **Regulated charges**

Regulated charges forecast include RES incentives, energy efficiency or environmental measures, system reliability and other country specific charges.

 For each market we analyse and reproduce the methodology behind the regulated charge allocation per consumer category.



#### **Case studies: analysis of 5 different power procurement strategies**

#### CASE 0 – Fully grid reliance, spot price-based contract (no green H<sub>2</sub>)

• Power solely procured from the spot market

#### **CASE 1 – Onsite Wind/Solar + Spot price contract**

• Onsite RES generation and missing demand covered by spot price contract

#### **CASE 2 – Onsite Wind/Solar + Battery + Spot price contract**

• Similar to Case 2, but the battery allows less grid reliance and arbitrage opportunities

#### **CASE 3 – Virtual RES PPA + Grid**

• The PtX load follows the RES PPA's profile, while the remaining part is covered by a spot-price based contract

#### CASE 4 – Virtual PPA, 24/7

• Power demand fully covered by a Virtual PPA

#### COUNTRIES ANALYSED Finland, Sweden, Italy, Spain, Germany and Great Britain



#### **Main input parameters**

All the input parameters are based on a set of official references related to countrywide datasets. The hourly wind and solar profiles are taken at country level (10-years average profiles) from the 'European Meteorological Data Hub'.

| Model Inputs               | Unit     | Value                  |
|----------------------------|----------|------------------------|
| PEM Electrolyser CAPEX     | €/kW     | 1400                   |
| PEM Electrolyser OPEX      | €/kW/yr  | 20                     |
| Electrolyser size          | kW       | 5000                   |
| Onshore Wind CAPEX         | €/kW     | 1300                   |
| Onshore Wind OPEX          | €/kW/yr  | 39                     |
| Utility Scale Solar CAPEX  | €/kW     | 600                    |
| Utility Scale Solar OPEX   | €/kW/yr  | 12                     |
| Li-ion Battery CAPEX (4hr) | €/kWh    | 450                    |
| Li-ion Battery OPEX (4hr)  | €/kWh/yr | 4.5                    |
| Project lifetime           | Yr       | 20                     |
| Customer connection level  | Voltage  | Medium Voltage (MV)    |
| Debt to equity ratio       | :        | 60:40                  |
| Project start              | Yr       | 2024                   |
| Discount rate              | %        | 3                      |
| Price Scenario             | -        | VaasaETT Base Scenario |

#### CASE 0, Full grid reliance – "Reference case", spot-price based contract





### **CASE 1 – Onsite wind/solar + Grid (spot price)**





#### CASE 2 – Onsite RES + Battery + Grid (spot price)





#### **CASE 3 – Virtual PPA adjusted to RES profiles**







#### CASE 4 – Virtual PPA, 24/7





- 24/7 PPAs cover the PtX demand with green supply and hour
- Final PPA price includes green certificate prices when needed





#### Final overview – Which case can be considered Green?





Case 3b: Solar PPA (12.5 MWp) - PtX adapting to RES load





#### **Conclusions**

- The right power procurement strategy will be a key factor determining PtX competitiveness
- Certain markets looks more attractive than others, thanks to RES potential, average low spot prices, average low bills
- Markets that look unattractive for PtX at first glance, might turn appealing by just choosing the right procurement strategy
- The right ancillary supply assets and the optimal interaction with the grid can determine the PtX project success.
- Based on this study, batteries are adding about 1 €/kgH2 to the system LCOH. At the same time, ancillary market revenues could completely turn this outlook.
- Further analysis is needed considering alternative market scenario and interaction with other revenue streams, such as heating, oxygen chain, ancillary markets, battery strategies.





## Thank you!

Dario Nikzad Forecasting Lead, Senior Energy Analyst

May 2024


### **Reflections from Gasgrid and Fingrid**



### Venla Saarela

*Head of Strategic Analysis and RDI* 

Gasgrid

**FINGRID** 



# Gasgrid's and Fingrid's joint hydrogen economy project

Venla Saarela, Gasgrid Finland 22 May 2023

# Energy transmission networks as enablers of the hydrogen economy and the clean energy system

- Main goals of the joint project
  - Establish the energy infrastructure requirements for the implementation of a clean and cost-effective system
  - Support the co-design and co-development of the energy infrastructure, enabling investments in clean energy
- Joint project launched in 2021
  - Interim report published in spring 2022
  - Scenario consultations summer-autumn 2022
  - Scenarios published in spring 2023
  - Final seminar in Autumn 2023
- The joint project was part of the HYGCEL
  - Business Finland granted funding to both the joint project and the wider project series





# The competitive advantage of Finnish hydrogen production is based on affordable wind power



FINGRID

#### Finland has a historic opportunity to lead the way





#### **FINGRID**

# Finland has enormous potential to produce renewable electricity and clean hydrogen

Highest growth scenario prospects for Finland in 2040 (TWh electricity/hydrogen)



#### Wind power

will be the most significant form of electricity production

#### Hydrogen production

will be the largest application for electricity

#### Hydrogen storages

will enable the maximal exploitation of affordable renewable electricity



# Large-scale exploitation of wind power requires flexibility



# Electricity is converted into hydrogen during windy hours, when there is plenty of cheap electricity on offer



GASGRID

#### **FINGRID**

#### HYGCEL SEMINAR - MAY 2024 117

# Hydrogen production is flexible, but end users receive a steady supply of hydrogen through transmission system and storages



FINGRID



# The integration of electricity and hydrogen balances the energy system





# Identifying the energy transmission needs of industry actors is vital for the development of transmission infrastructure

Energy transmission needs will be determined by the relationship of renewable electricity production, hydrogen production and hydrogen consumption







**FINGRID** 

#### How will transmission needs develop in the coming decades? Now 2030 2040 Hydrogen gas transmission to Northern





# How to manage growing transmission volumes cost-effectively?





# Efficient use of both transmission infrastructures is required

Transmission Transmission as solely as electricity electricity and hydrogen (TWh) (TWh) 35 ~75 35  $\langle \rangle$ 2.

Transmission needs in the highest growth scenario in 2040

Transmission as electricity alone would require the construction of

#### dozens of power lines

running from north to south

One hydrogen pipeline (DN1200) can transmit as much energy as ~15 power lines (400kV)



### Location matters in enabling growth



Transmission needs in the highest growth scenario in 2040

For managing the system's **total costs** and leveraging its **growth potential**, it is important to encourage production and consumption sites:

- to act flexibly in the market and consider the status and transmission capacity of the electricity and hydrogen system
- to establish themselves in locations
  that take electricity and hydrogen transmission
  investments into account



#### FINGRID

# Co-development of transmission infrastructures enables growth and responding to customer needs



FINGRID

### The main conclusions of the hydrogen economy project

Finland has excellent potential to become a forerunner of the hydrogen economy

- Great potential in renewable electricity production
- Strong main grid
- Expert workforce and several companies for different parts of the value chain

Development of electricity and hydrogen infrastructures enables growth of the hydrogen economy

- Proactive development of the main grid and hydrogen transmission grid for customer needs
- Efficient leveraging of both transmission infrastructures is key – location matters!



# FINGRID





# Modelling of electricity, hydrogen, CO2, and end-products transportation



**Christian Breyer** *Professor for Solar Economy* 

School of Energy Systems

LUT University



#### Satu Lipiäinen

Post-doctoral researcher Laboratory of Sustainable Energy Systems

LUT University





HYGCEL research presentation

# Modelling of electricity, hydrogen, CO<sub>2</sub>, and end-products transportation

Oodi, Helsinki, May 22, 2024



LUT University

### Presentations in this session

- 1. The role of hydrogen in the value chain and a transportation case example "Southeast-Ostrobothnia"
  - Christian Breyer, professor, LUT University
- 2. Case study:  $H_2$  delivery to a steel mill
  - Satu Lipiäinen, postdoc researcher, LUT University



# The role of hydrogen in the value chain and a <sup>C</sup> <sup>J</sup> <sup>Tampere University</sup> transportation case example "Southeast-Ostrobothnia"

Topics of this presentation

- The role of hydrogen in the energy system
- Feasibility of hydrogen transportation
- The transportation case Southeast-Ostrobothnia"

### Role of Hydrogen in the Value Chain





- >> Hydrogen is important for applications that cannot be directly electrified: e-fuels, echemicals, e-materials
- >> The value chain is complex and comprises several steps, such as electricity generation, transport, and hydrogen and final product production
- By far largest share of hydrogen is as an intermediate product for the final product, such as ammonia, methanol, kerosene jet fuel
- Final products are easier to transport as hydrogen

### Flexibility provided by hydrogen storage





LUT University

- >> Hydrogen storage connects variable renewable electricity with less flexible demand profiles such as PtX production
- Hydrogen storage buffers the low-cost renewable electricity for times of demand

75%

50%

25%

The flexible hydrogen storage for PtX production enables massive additional benefits for the energy system, avoiding inefficient and costly overdimensioning of renewable generation capacities.

### Analysing transport costs

#### Cost of transporting H<sub>2</sub> by ship and pipeline



### Hygcel Tampere University

LUT University

- Transportation of final PtX products is more attractive than transportation of H<sub>2</sub>
  - 2000 km hydrogen transport by pipeline: about 15-20 €/MWh<sub>H2,LHV</sub>
  - 2000 km ammonia transport by ship: about 1.5-2 €/MWh<sub>NH3,LHV</sub>
- Short distance hydrogen transportation is feasible, whereas long-distance transportation might not be attractive
  - Short distance (several 100s km) transport is no cost burden
  - Long distance (> several 100s km) transport chains for hydrogen are unlikely due to high cost ... it also means that Europe may not import hydrogen by ship from overseas

• Source: Galimova et al. (2023a; 2023b)

4.

• Feasibility of green ammonia trading via pipelines and shipping: Cases of Europe, North Africa, and South America

<sup>•</sup> Impact of international transportation chains on cost of green e-hydrogen: Global cost of hydrogen and consequences for Germany and Finland

### Transport case 1 – Southeast - Ostrobothnia

- Several industrial cases involve electricity and/or hydrogen transmission from wind sites to bio-CO<sub>2</sub> sites, or CO<sub>2</sub> transport from CO<sub>2</sub> sites to a wind site.
- We studied methanol production for the case of Finland combining best wind resources in North Ostrobothnia and bio-CO<sub>2</sub> in the southeast.
- CO<sub>2</sub> transport seems to be the least cost transport option.
- Transporting H<sub>2</sub> or electricity cost almost the same, but power lines have multiple valuable roles in an electrified energy system.
- Despite slightly higher cost sending the energy to Southeast Finland may be still attractive for regional industry policy reasons.





LUT



LUT University

### Case study: H<sub>2</sub> delivery to a steel mill

Topics of this presentation

 Evaluation of energy transportation options from three perspectives: investment costs, energy use and greenhouse gas emissions



### Case study: H<sub>2</sub> delivery to a steel mill



- >> The study evaluated 5 optional ways to provide hydrogen to a steel mill in Inkoo (144 000 t<sub>H2</sub>/a / 5 TWh)
- >> Transport distance is 300 km cases except 500 km in shipping
- >> Three perspectives were studied: techno-economy, energy use, and greenhouse gas emissions



Lipiäinen, S., Sillman J., Vakkilainen, E., Soukka, R., Tuomaala, M. (2024) Hydrogen transport options for a large industrial user: Analysis on costs, efficiency, and GHG emissions in steel mills. Sustainable production and consumption. 441–13. <u>https://doi.org/10.1016/j.spc.2023.11.021</u> Read more: https://www.lut.fi/en/hygcel



# Complexity in the energy delivery increases costs and energy used in operations



- 1) Lowest cost is achieved in electricity transport (electrolysis at the mill) and in pipeline transport as hydrogen
- 2) Transport as liquid H<sub>2</sub> or methane requires additional unit operations, which increases costs and energy use
- 3) Despite the methanation route (Case 3) is expensive and inefficient, it would provide an opportunity to utilize NG infrastructure and provide a carbon sink (black bar in fig).
  - The emission benefit would require the use of fully renewable electricity

# Evaluation from multiple perspectives provides a more comprehensive result



- 1) Results are sensitive to case-specific properties: H<sub>2</sub> volumes, transport distances, location of H<sub>2</sub> user and producer, available infrastructure, etc.
- 2) Especially the price of electricity affect the cost of transported  $H_2$  very much
- 3) Open questions and uncertainties regarding hydrogen transport remain



### Case study: H<sub>2</sub> delivery to a steel mill

#### Key messages

- There are notable differences among transportation options
  - Additional conversions need to be avoided when transporting inside Finland
- Each transportation case must be separately looked at



# **Coffee break until 14.30**

H2Cluster Finland & HYGCEL project joint seminar

May 22, Oodi, Helsinki

www.h2cluster.fi

## Agenda

## Scan the QR Code to access today's agenda!

Stay informed and keep track of all the exciting sessions and events happening today. Simply scan the QR code with your phone to view the full schedule and detailed information about each segment. Don't miss a moment of the action.







### Hydrogen economy as a corner stone for Finland to achieve green transition



### Kai Mykkänen

Minister of Climate and the Environment



**VALTIONEUVOSTO** STATSRÅDET

# Hydrogen economy as a corner stone for Finland to achieve green transition

Kai Mykkänen, Minister of Climate and the Environment

H2 Cluster Finland – HYGCEL project joint seminar 22<sup>nd</sup> May. 2024 **22**45.2024

## Climate and Energy policy

" Finland will use effective and sustainable means to increase its climate handprint and proceed towards carbon neutrality"




## Finland's greenhouse gas emission trends

100 Million tonnes of carbon dioxide equivalent



Annual Climate Report data for 2022 are based on Statistics Finland's proxy estimates, which will be specified later.

## How and why should we make Finland a clean energy superpower?



# CO<sub>2</sub>-emissions of power generation have collapsed



## Volume of CO2 captured for storage and utilisation in the EU and share of the CO2 captured by origin:



## **Green investments in Finland**

## Investment amount (M€) by theme

| Offshore wind  |                                                             | 103 14 |
|----------------|-------------------------------------------------------------|--------|
| Hydrogen       | 14 328                                                      |        |
| Onshore wind   | 8 744                                                       |        |
| Batteries      | 7 420                                                       |        |
| Steel          | 6 145                                                       |        |
| Biorefinery    | 5 800                                                       |        |
| Solar Power    | 4 201                                                       |        |
| Energy storage | 3 158<br>Source: Confederation of Finnish Industries, Green |        |

Transition Data Dashboard (updated 26<sup>th</sup> April 2024)



2205.2024

## **Hydrogen Prospects in Finland**

Projects:

ma

Ranua **ET Fuels** 

Raahe

Raahen Monivoim

Kokkolan Energia Fortum

> SSAB Kokkola

Flexens

Hycamite Aurelia Turbines

Plug Power

Vaasa

**EPV** Energia

Kristiinankaupun

**CPC** Finland

Plug Power

Pori

Ren-Gas

Harjavalta

Åland Flexens

Orkla

Naantali

Green North Ener

Power

> 30

#### Nordic Ren-Gas Wins in the First EU Hydrogen Auction with EUR 45 million Bid

#### 30.4.2024

Nordic Ren-Gas Lahti plant has been among selected winners with a EUR 45 million subsidy grant through the European Hydrogen Bank's first competitive bidding process. This significant financial support will enable Nordic Ren-Gas to scale up its renewable e-methane production in Lahti Finland, and to accelerate the development of the decentralized e-methane production network.



#### 18.12.2023

#### Westenergy, CPC Finland and Prime Capital plan a large-scale carbon capture plant

The parties entered into an agreement for the joint development, construction and operation of a carbon capture unit in the municipality of Mustasaari, Finland. The unit will capture CO2 from the flue gas generated by the existing Westenergy plant. The captured CO2 will be liquefied, and a large fraction will be transported to Kristinestad where it will be utilised at Prime Capital's and CPC's power-to-x site. The carbon capture operations will be managed by Westenergy. The total value of the investment is approximately EUR 138 million and the Ministry of Economic Affairs and Employment has granted a total of EUR 20 million of energy investment aid for the project.



source: H2 Cluster Finland

source: Gasgrid Finland

# Clean electricity production is a solid foundation for a hydrogen economy



## Thank you!





## Perspectives to sustainability, safety, and profit sharing in green hydrogen value chains



#### Antti Ylä-Kujala

Post-doctoral researcher School of Engineering Sciences

LUT University



#### Jani Sillman Post-doctoral researcher, School of Energy Systems

LUT University





HYGCEL research presentation

## Perspectives to sustainability, safety and profit sharing in green hydrogen value chains

Oodi, Helsinki, May 22, 2024



LUT University

## Presentations in this session

- 1. Profit sharing in PtX investment, case methanol value chain
  - Antti Ylä-Kujala, Post-Doctoral Researcher, LUT University
- 2. Sustainability and safety in PtX value chains
  - Jani Sillman, Post-Doctoral Researcher, LUT University



## Profit sharing in PtX investment, case methanol value chain

### **Topics of this presentation**

- The role of hydrogen provider in the value chain
- Assessment of economic uncertainties in the value chain

> The impact of electricity price, subsidization and interest rates



## Life cycle costing (LCC) was used to study profitability potential



- Industrial PtX value chain is a complex chain of unit operations, and all entities are looking for profitable business.
- Case e-methanol was formed to estimate the profitability of individual operations in the value chain using fixed pricing.
- >> Life-cycle costing (LCC) approach based on the discounted cashflow method was used.





## Positive net cash flow (NCF) for PtX methanol is difficult to achieve

|                | Electricity price |         |          |   |  |
|----------------|-------------------|---------|----------|---|--|
| NCF            | Normal            | Low     | Very Low |   |  |
|                |                   |         |          |   |  |
| Carbon Dioxide | 76 M€             | 81 M€   | 88 M€    |   |  |
| Hydrogen       | -856 M€           | -514 M€ | -128 M€  | + |  |
| Methanol       | 440 M€            | 464 M€  | 503 M€   |   |  |
|                |                   |         |          |   |  |
| Value Chain    | -340 M€           | 31 M€   | 463 M€   | - |  |
|                |                   |         | 1        |   |  |

NCF for the value chain is clearly positive only with very low electricity prices

NCF for the H<sub>2</sub> producer remains negative in all scenarios



Sources: Ylä-Kujala et al., Silman et al. (both articles in review) Prices: normal ~47 €/MWh, low ~ 37 €/MWh, very low ~ 27 €/MWh

158



## Subsidies and interest rate are powerful mechanisms

|                          | Electricity price |         |          |               |
|--------------------------|-------------------|---------|----------|---------------|
| NCF                      | Normal            | Low     | Very Low |               |
| Value Chain (Subsidy)    | -340 N            | l€ 31   | M€ 463   | <u>8 M€</u> ◀ |
| Total Investment         | 518 N             | l€ 518  | M€ 518   | 3M€           |
| Value Chain (No Subsidy) | -631 N            | l€ -258 | M€ 173   | <u>8 M€</u> ◀ |
| Total Investment         | 808 N             | € 808   | M€ 808   | BM€           |

Investment subsidy (here: 60%) to H<sub>2</sub> production improves profitability significantly

Lowering the interest rate, i.e., WACC, was found to have a significant effect





University

### Profit sharing in PtX investment, case methanol value chain

#### Key messages

- The role of the H<sub>2</sub> provider is challenging, because profitability lies in value added products
- The value is created in the whole PtX value chains and therefore the value chain should be looked as one business entity instead of separate operations
- The value chain should be measured as one entity in which profits are shared
- Incentives (e.g., subsidization) and collaborative models (e.g., PPA or PPP) are key factors to start investment activity



LUT University

## Sustainability and safety in PtX value chains

Topics of this presentation

- Sustainable transition of PtX what is it about?
- Results from safety study
- Potential climate benefits

# The sustainable transition needed is about realizing Styres benefits and managing risks

- Examples of benefits and risks on three pillars of sustainability:
  - Economic aspects <sup>1)</sup>
    - Benefits through profitable business
    - Risks caused by, such as, regulation, new technology and material and energy costs
  - Environmental aspects
    - Benefits achieved through climate mitigation<sup>2)</sup>
    - Risks caused by potential loss of biodiversity (forest land)
  - Social aspects
    - Benefits achieved by new jobs, tax incomes and knowledge
    - Risks caused by unsafe operations <sup>3)</sup> and unfair transition



LUT University

<sup>•</sup> Examples provided in this session <sup>1), 2), 3)</sup>



# Human activity is the main cause for hydrogen incidents and accidents



Human factor is present in most of the root causes of hydrogen incidents and accidents

>> Most of the hydrogen incidents and accidents are related to:

- Technical operation
  - tools and equipment failures with pipes, valves, connection joints etc.
- Process management
  - E.g., lack of protocols, procedures and guidelines to run the facility
- Human activity
  - E.g., failure to follow procedures and training issues
- About half of the hydrogen incidents were related to organizational and managerial issues

# PtX products provide low-carbon alternatives to fossil economy

- Emission savings modelled using LCA as a tool
- >> Typical conventional products used as a reference product
- Assumed final PtX product manufacturing and consumption in Finland
- Results show that renewable electricity based H<sub>2</sub> and PtX products are radically better than conventional fossil-based ones in terms of their impact to climate.

Emission savings for use of 10kt green hydrogen in Finland







## Sustainability and safety in PtX value chains

Key messages and findings

- >> Safety
  - H<sub>2</sub> has been used safely for decades
  - Larger scale H<sub>2</sub> infrastructure increases the accident probability and/or the consequences
  - With a careful risk management accidents can be prevented. Severe accidents can prolong PtX economy and cause reputational damage.
  - Workforce training (education), better guidelines and improved regulation for H<sub>2</sub> handling are a key for success
- >> Climate mitigation
  - PtX value chains can help to **achieve** national carbon neutrality targets
  - Finland can help other countries to achieve their climate targets by providing PtX products (positive carbon handprint) creating also export potentials for Finland
  - H<sub>2</sub> should be first utilized in those sectors that can achieve the highest emission reductions (steel, ammonia, grey H<sub>2</sub>) or are, so called, hard to abate sectors (aviation fuel, steel)



YGCEL

#### Additional reading -LCA modell to assess climate benefits

- Assumptions:
  - Hydrogen leakage 3% in Finland
  - 65% (LHV) electrolysis using 100% wind energy to produce H<sub>2</sub>.
  - Average gridmix used in synthesis processes (green steel uses nuclear)
  - Input-output analysis values from literature
  - Cradle-to-use phase
  - Transportation considered



14

## Additional reading - safety



Failure To Follow Procedures

Events caused by technical operation related (upkeeping operations).

Source: Alfasfos et al.2024 HYGCEL results page <u>https://www.lut.fi/en/hygcel</u>

## Additional reading: Economic vs. environmental goals



Discounted cash flow of one-time investment (O) vs investing in phases (P)



Cumulative emission reductions during 30-year operation

|                                    | PtMeoh |       |       |
|------------------------------------|--------|-------|-------|
| Emission reduction (LCA, End use)  |        |       | Very  |
|                                    | Normal | Low   | low   |
| One-time Investment [MtCO2-eq/30y] | -19,1  | -20,2 | -21,9 |
| Investing in phases [MtCO2-eq/30y] | -13,3  | -14,0 | -15,0 |

Investing can be made in phases. A case study was made first to invest in 150MW electrolyzer, and then scaled up to 750 MW after 10 years.

Capital intensive one-time investments are challenging (economic uncertainty). Investing in phases reduces capital required.

However, the investing in phases reduces cumulative GHG emission savings.

If fast emission reductions are wanted, one-time investments to PtX value chains are desirable



## **Reflection to Hydrogen safety**



### Jari Sistonen

Chairman

U-Cont



How would the safety of hydrogen be a positive sales argument. What questions then need to be answered?

Jari Sistonen jari.sistonen@ucont.fi U-Cont Ltd <u>www.u-cont.fi</u>





- Leading supplier of distribution stations and fuel systems in Northern Europe
- ✓Other main products: tanks, industrial fuel systems and design

LOGISTICS

INSTALLATION

AFTERSALE

SERVICES

Located in Joroinen, Finland, and in Krakow, Poland

PRODUCTION

CONCEPT

**DEVELOPMEN**<sup>T</sup>

DESIGN



# PICTURE OF HYDROGEN SAFETY WEIGHT BALANCE?





# CASE NORWAY HYDROGEN CARS





### CASE HYDROGEN NORWAY

CUSTOMER AREA

Uno Ci

HY 10153

H2 PRODUCTION AND H2 PRODUCTION AND

R

Jari Sistonen <u>ri.sistonen@u-cont</u> U-Cont Ltd <u>www.u-cont.fi</u>

ONT

Smart green solutions

Uno

## 1 of 20: Lighthouse Project, Solar-to-H2



Collaboration With Asplan-viak & Entra, Supported By Enova & Akershus CC



#### June 10.2019 Kjörbo Oslo hydrogen station explotion

- No human casualities
- Airbags nearby cars caused few hospital visites
- Hydrogen production & warehouse damaged
- Close highway closed for few hours
- Operator decided to stop hydrogen project after

#### => NEL HYDROGEN INFORMATION OF REASON

1. High pressure flange torgue was not tightened enough / flange type was changed more triky to tight.

2. This caused a leakage after one operational year.

3. Finally, the high pressure expanded and caused a strong pressure shock to gravel, which in turn created a spark and explosion.

https://nelhydrogen.com/status-and-qaregarding-the-kjorbo-incident/







# APPROVAL AND STANDARDISATION





## APPROVAL PROCESS IN FINLAND EXAMPLE

Solution Above ground gasoline storage with fire and bullet protected tanks TO PROTECT GROUND WATERS

- **W** U-Cont made development investments and agreed fast approval process with TEM at 2008
- **STILL WAITING APPROVAL BUT HELSINGIN SANOMAT SAID THAT ITS SOON IN PROCESS (HS 8.5.2024)**

SAFETY OF INNOVATION INVESTMENTS IN FINLAND?





Jari Sistonen jari.sistonen@ucont.fi U-Cont Ltd <u>www.u-cont.fi</u>

Jari Sistonen

U-Cont Ltd

#### NATIONAL SAFETY **RESILIENCE WITH HYDROGEN?** Culture War Approvals Planning/Desigr Standardisation Time H2 Poltics Costs/ Economy SAEETY User Daily operation **Technical solutions** Reslilience ΕX CONT


### HYDROGEN / ENERGY NETWORK AND NATIONAL SAFETY

- Section 2017 Secti
  - Alternative routs in case something happened
    - 😵 Inside Finland
    - 😵 Near by Finland
  - ✓ The ability to defend key routes in the event of a crisis
- Areal planning of this network means areal planning of most heavier branches of industry=> Means areal planning of indutrial wealth
- Section 2015 Secti

Valtioneuvoston periaatepäätös vedystä Valtioneuvoston julkaisuja 2023:19 Suomi tavoittelee Euroopan johtava asemaa vetytaloudessa läpi koko arvoketjun. Tavoitteina ovat puhtaan vedyn ja sähköpolttoaineiden valmistus kotimaisen teollisuuden, liikenteen ja energiajärjestelmän tarpeisiin, teollisuuden uudistuminen ja korkean jalostusarvon vientiliiketoiminnan kasvu sekä investointien varmistaminen Suomeen.

Stockholn

Copenhager

ste



# HYDRGEN SAFETY 2024 QUESTIONS



• Better to speak safety balance than only safety because then you have more truthful picture on table.

- Practical safety is often other than theoretical, thats why we should have strong practical role since beginning.
- Explosive safety is and will be the heaviest part of safety balance, thats why we have to focus on storage and transport when speaking or designing of safety. Thats why hydrogen pipe lines and –storages are so important.

 $\land \land$ 

Ground water

User friendly

Uno

Great car

EX safety



# Thank You

1 4





### Hydrogen value chains: Reflection of global HYGCEL policies for the Finnish Hydrogen economy



### Pami Aalto

*Jean Monnet Professor in International Relations Faculty of Management and Business* 

Tampere University

Hydrogen value chains: Reflections on global policies for the Finnish hydrogen economy

Prof. Pami Aalto Tampere University/Politics unit Business Finland HYGCEL consortium

Presentation 22.5.2024 Helsinki



# The largest markets for **H2 fuels** produced in Finland will likely be in Europe – for chemicals etc., maybe the same case?

### Figure 7 The global renewable hydrogen map



- CHN mostly domestically oriented?
- Large US potential, but uncertainties vis-à-vis exports due to the policies of the next presidential regime and possible domestic instability
- Persian Gulf: affordable CCUS fuel
  + large renewable H<sub>2</sub> potential
- AUS, IN, ID → Asian markets due to transport cost reasons?
- Northern Sea route unusable
- Finnish fuel exports to Asia uncertain due to transport costs & shrinking global commons character of the Seas
- Southern Europe to be supplied with Northern & sub-Saharan Africa

Source: Pflugman & DeBlasio (2020)

Competition is tough even in Europe both for price and policy reasons – but **competitiveness** has many components (one of them may be **strategic autonomy**!)





Fig. 1 - Renewable hydrogen potentials by 2050.

- Finnish production globally <u>not</u> among the most price competitive & transport cost to far away markets may be prohibitive
- In Europe, Finnish production competes with Norwegian, Baltic, Spanish, North African, sub-Saharan & Latin American production
- Many potential producer countries have strong policy push & incentives
- Economical pipeline transport ca. 1000-2000km

## Finnish H2 fuel production can compete with connectivity & diversified infrastructure

- Poor connectivity to otherwise lucrative Asian markets as Northern searoute and Russian land transit unavailable
- Although only few Finnish projects are operational, those operational in central Europe will not satisfy all demand there
- Finnish 'project pipeline' comparable to that of most potential suppliers to Europe
- H2 transport through pipeline & H2 fuel transport via tankers both have vulnerabilties
- Connection to Barents Sea and/or Sweden to address vulnerabilities
- Destinations: UK, BE, NET, DE?



### What did the Finnish forestry industry once do? It is possible to offshore some production

- $\rightarrow$  (yet unknown) demand will exist
- $\rightarrow$  production closer to demand diminished transport cost
- $\rightarrow$  investment into 'safe' (?) allied/NATO countries (USA, JPN, AUS)
- → or to riskier (Namibia? Chile? Morocco? India?)
- $\rightarrow$  competitive advantage with policies
- ightarrow just like RES deployment was kicked off with policies
- $\rightarrow$  invest in countries with proper policies

Figure 2.15 Potential demand for low-emission hydrogen from announced policies and targets, private off-take agreements, commitments of international cooperation initiatives and the Net Zero Emissions by 2050 Scenario, 2030



Notes: NZE = Net Zero Emissions by 2050 Scenario. In "Initiatives", the dashed area corresponds to the range between the most conservative (low) and boldest (high) estimates of the demand that can be generated by international initiatives.

Source: IEA (2023)

Figure 4.3 Potential low-emission hydrogen trade flows based on announcements, 2030



IEA. CC BY 4.0.

Notes: LOHC = liquid organic hydrogen carrier; UAE = United Arab Emirates; Mt = million tonnes. In million tonnes of hydrogen equivalent, only flows larger than 150 kt  $H_2$  equivalent per year are shown. Source: IEA analysis based on multiple sources, including company announcements.

Several trade projects are under development, with Australia, Central and South America, North America and Africa as key exporters, while only a few importing countries have been identified.

### Policy push required to create demand

→ redirected fossil fuel subsidies & expenses that so far have went to buying fossil fuels from abroad  $\rightarrow$  in 2022, the EU imported energy worth  $\in$  604bln...

Figure 2.15 Potential demand for low-emission hydrogen from announced policies and targets, private off-take agreements, commitments of international cooperation initiatives and the Net Zero Emissions by 2050 Scenario, 2030



Notes: NZE = Net Zero Emissions by 2050 Scenario. In "Initiatives", the dashed area corresponds to the range between the most conservative (low) and boldest (high) estimates of the demand that can be generated by international initiatives.



### So how does the EU policy mix look like? Gruyere or Maasdam?



| Command-and-control                        | Example                                                                                                    | Notes                                                                          |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Targets                                    |                                                                                                            |                                                                                |
| EU gas and hydrogen<br>package (2023/2024) | 42.5% of H2 renewable by 2030 (RFNBO) = 4Mt;<br>60% 2035                                                   | Where is the 2040 target?                                                      |
|                                            | 1.2% of aviation fuel renewable H <sub>2</sub> by 2030<br>(RFNBO) = 92.000t + 460.000t CCUS                | The industry's own actions are slow                                            |
|                                            | 1% road transport fuels renewable H <sub>2</sub> by 2030<br>(RFNBO) = 360.000t                             | Hopefully this goes to heavy traffic, but competing solutions exist            |
| Performance standards                      | RFNBO                                                                                                      | Eligibility: 3.4kg of CO <sub>2</sub> e/kg H <sub>2</sub>                      |
| <b>Blending obligation</b>                 | Natural gas pipeline operators to accept 5% $H_2$<br>1.10.2025 $\rightarrow$ 75% tariff discount for $H_2$ | Primarily targeting industrial sector's emission reductions Hollanti (2026)    |
| Incentives                                 |                                                                                                            |                                                                                |
| Hydrogen Bank                              | 720Me on first round (CfD type), 1.58Mt in 10 years, 7 projects (1 to Finland) → 2Mrd+ €                   | + MS incentives for projects not receiving EU funding, e.g. DE 350M€; EST 39Me |
| RDI support                                | Clean Hydrogen Partnership, 190M€ 2024                                                                     | + MS 10M€+ projects: BR, NET, DE, DK                                           |

# What about the competitiors? India's renewable H2, NH3, MeOH boost



| Command-and-control                                                        | Examples                                                                                  | Notes                                                                                                                             |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Target                                                                     | 'Self-reliant India' scheme (2020)                                                        | Energy independence by 2047                                                                                                       |
| Performance standard                                                       | Green Hydrogen Standard for India<br>(2023)                                               | Eligible RES incl. biomass; < 2.0 kgCO <sub>2</sub> e/kg of H <sub>2</sub> (12m average); methodology TBA                         |
| Incentives                                                                 |                                                                                           |                                                                                                                                   |
| Production subsidy                                                         | USD 25mln →5 Mt of 'renewable'<br>hydrogen by 2030 (with 125GW RES<br>capacity additions) | May reach 10 Mt/yr incl. exports                                                                                                  |
| Competitive bidding scheme, 2.2bln USD                                     | Subsidy for electrolyser development                                                      | Part of SIGHT programme                                                                                                           |
| Competitive bidding scheme, 2.2bln USD                                     | Subsidy for RES based H <sub>2</sub> production                                           | Part of SIGHT; USD 0.64/kg) for 1 <sup>st</sup> year, USD 0.51/k) for 2 <sup>nd</sup> year; USD 0.38/Kg) for 3 <sup>rd</sup> year |
| Waiver                                                                     | Electricity transmission charge waiver                                                    | Until 2030/2036                                                                                                                   |
| Management instruments                                                     | Manufacturing zones for green H <sub>2</sub>                                              | Spatial planning policy                                                                                                           |
|                                                                            | H2 safety certification programme                                                         |                                                                                                                                   |
| Sources: e.g. IEA (2023); Pal et al. (2024);<br>Government of India (2023) | H2 fuel quality control system                                                            |                                                                                                                                   |



Japan's hydrogen society vision proposed to do it a bit differently



### Some key leftovers from Japan's Hydrogen Society vision, on top of impressive H<sub>2</sub> supply chain development

Transport – heavy competition with other technologies



6427 FCV FC train demonstration







FC bus deployment 106 FC buses



FC Truck development



District & residential heating + CHP  $\rightarrow$  best applied where?

# Stationary Fuel Cells at home FC CHP\* for home use: More than 400,000 units installed HYDNID-FE Sources: METI (2021, 2022)

R&D for large-scale thermal power generation (500 MW class)

Development of technology for hydrogen co-firing in existing large-scale thermal power plants, achieving a hydrogen co-firing rate of 20% by 2018.

R&D for cogeneration for supplying heat and electricity (1MW class)

We have developed a technology that can freely co-fired hydrogen with natural gas from 0 to 100%.

In 2018, we will be the first in the world to achieve combined heat and power supply to urban areas using hydrogen exclusively.

Technology development for hydrogen single fuel power generation is in progress from 2020.

From 2019, technology development for highefficiency dedicated hydrogen single fuel power generation is in progress.





Hydrogen power generation facility (hydrogen CGS) constructed on Port Island in Kobe City

What about the global competition in electrolyser manufacturing?



#### Electrolyser investments, 2021-22

Sources: IEA (2023); METI (2021, 2022)

#### Selected active hydrogen R&D programmes

| Country           | Programme                                                                     | Funding and duration                                               |
|-------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Australia         | ARENA's R&D Programme<br>CSIRO Hydrogen Mission                               | AUD 22 mln (~USD 15 mln) – 5 yr<br>AUD 68 mln (~USD 47 mln) – 5 yr |
| European<br>Union | Clean Hydrogen for<br>Europe                                                  | EUR 1 bln (~USD 1. bln) - 10 yr                                    |
| France            | PEPR Hydrogène                                                                | EUR 80 mln (~USD 91 mln) – 8 yr                                    |
| Germany           | National Innovation<br>Programme for Hydrogen<br>and Fuel Cell Technology     | EUR >250 mln (~USD 285 mln) – 10 yr                                |
|                   | Wasserstoff-Leitprojekte                                                      | EUR 700 mln (~USD 800 mln) - n.a.                                  |
| Japan             | NEDO innovation<br>programmes                                                 | JPY 699 bin (~USD 6.5 bin) – 10 yr                                 |
| Spain             | Misiones CDTI                                                                 | EUR 105 min (~USD 120 min) - 3 yr                                  |
| United<br>Kingdom | Low Carbon Hydrogen<br>Supply                                                 | GBP 93 min (~USD 119 min) – n.a.                                   |
| United<br>States  | H2@Scale<br><u>M<sup>2</sup>FCT – H2New Consortia</u><br>DOE Hydrogen Program | USD 104 mln – 2 yr<br>USD 100 mln – 5 yr<br>USD 285 m/yr           |

# → Japan invests some 450mln USD public money for electrolysers to bring cost to 1/6!

#### **GI Fund Project**<sup>(2)</sup> : Scaling up Electrolysers

- To further reduce the cost of electrolysers, Japanese government will support demonstration projects for 1) scaling up electrolysers, 2) implementing superior components and 3) system optimization with several demands(~70 Billion Yen)
- The goal of this project is to establish a strong technological base to attain the cost of electrolyer (up to 1/6 of the current system cost)

#### But USA & Europe lead investment in electrolyser start-ups



Various: <0.45, 0.45-1.5, 1.5-2.5, 2.5-4 g CO<sub>2</sub>-eq/kg H<sub>2</sub>

> <3.4g CO<sub>2</sub>-eq/kg + low-carbon H2 products e.g. synthetic methane, 70% of fossil fuel equivalent GHGs

A 'global' hydrogen fuel market – fragmentation emerging?

????

??

<4.9g CO<sub>2</sub>/kgH<sub>2</sub>

\*

11

<4g



'Just get the numbers'

<3.4 g

## A 'global' policy landscape?

- Not so much in terms of actual 'global' policies yet but predominantly national + EU-based
- Some international standardisation efforts
  - European Clean Hydrogen Alliance (standardisation)
  - European Hydrogen Safety Panel, ISO (work on fuelling stations & protocols)
  - SAE International [USA] (hydrogen refuelling stations)
  - International Electrotechnical Commission (standards on performance testing in fuel cell/battery systems in excavators + power-to-methane, fuel cells in trucks)
- Several 'agent' organisations & platforms working on knowledge accumulation, sharing & dissemination



- Even though Finnish H<sub>2</sub> fuel production will not be the cheapest, strategic autonomy policies & friend-shoring to create opportunities within NATO/EU
- But Finland's own H2 policies are not much to be seen...
- Some risks in transition period CCUS solutions based on natural gas extraction
- And in CO<sub>2</sub> in methanol solutions → how long will biological origin CO<sub>2</sub> be considered climate neutral?
- For a value-added, resilient niche, invest in ammonia + SWE/NO transport connection?









# Finland as part of the global hydrogen economy – what should be done to become a leader?





### Marko Janhunen

Vice President, Public Affairs

Gasgrid



### Pami Aalto

Jean Monnet Professor in International Relations Faculty of Management and Business

Tampere University

### Simo Säynevirta

*Chair of H2Cluster Finland, Head of ABB Green Electrification Ecosystem* 



### **Riitta Silvennoinen**

*Circular economy and Energy transition lead* 

Deloitte



#### Jukka Ruusunen Industry Professor

LUT University



### Petteri Laaksonen

Research Director, School of Energy Systems

LUT University

# Share Your Thoughts on Finland's Hydrogen Economy

**Scan the QR code:** Use your phone to scan the QR code and join the conversation.

Enter the Code: Alternatively, go towww.menti.com and enter the code 84849571 to participate.







# **Q&A and conclusion**



## Simo Säynevirta

H2Cluster Finland chair

Head of ABB Green Electrification Ecosystem